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ABSTRACT: Mine production scheduling requires quantification of the variability of the attributes of the 
mined product as delivered to the facility. Geostatistical simulation is a method of generating, on any 
specified scale, realisations of these attributes. Geostatistical simulation provides a set of values that can be 
used in mine production planning. In this paper, after the importance of geostatistical simulation is briefly 
reviewed, the sequential Gaussian simulation, which has been widely accepted for the simulation of in-situ 
mineral properties, is introduced in a case study. 

I INTRODUCTION 

Data on the in-situ characteristics of the mineral 
product are obtained from drilling and other 
sampling programmes such as grade control and 
blast hole sampling. The grades of planning blocks 
from the grades of drill holes and/or the grades of 
blast hole cuttings are commonly estimated by linear 
kriging (e.g., simple or ordinary kriging). These 
estimators, based on the least squares method, have 
significant drawbacks: 
1. They are conditionally biased because they 

implicitly assume a cost or loss function that 
equally penalises underestimation and 
overestimation. Unless a Gaussian model for 
errors is assumed, linear kriging methods yield 
an inadequate measure of local accuracy. 

2. Linear kriging methods yield smoothed results, 
which cannot be used for these applications 
because of their sensitivity to the existence of 
extreme values and their patterns of continuity. 
Geostatistical simulation can assess uncertainty 
in production scheduling by use as a "transfer 
function". To put it another way, risk arising 
from simulation is assessed by multiple 
realisations. 

3. Linear kriging methods can estimate on the basis 
of fixed support (e.g., point or block). As the size 
of the support changes, it is necessary to use 
cumbersome and assumption-dependant 
correction methods. 

Conditionally unbiased methods are, in general, 
non-linear. These methods do, however, require 
significantly more assumptions, which are often 
unverifiable, and they can be prohibitively time-

consuming. Furthermore, these methods provide a 
sense only of local uncertainty because each 
conditional cumulative distribution function deals 
with a single location. Notice that single point ccdfs 
(cumulative conditional distribution functions) do 
not ensure the quantification of spatial uncertainty. 
For example, the prediction of grade fluctuations for 
various mining and processing decisions (e.g., 
extraction method, production schedules, milling 
and stockpiling) requires the assessment of spatial 
uncertainty rather than that of local uncertainty. 

2 GEOSTATISTICAL SIMULATION 

Geostatistical simulation provides a set of values 
that conform to the following criteria (Dowd, 1993): 

(i) At all sampled locations they coincide with 
the actual values, 

(ii) They have the same spatial dispersion, i.e., 
same variogram, as the true values, 

(iii) They have the same distribution as the true 
values. 

(iv) They are co-regionalized with any other 
simulated variable in the same way as the 
true values. 

A set of values conforming to these criteria is 
called a conditional simulation, i.e., a simulation that 
is conditional on the simulated values coinciding 
with the true values at the sampled locations. A non-
conditional simulation has attributes (Ü), (iii) and 
(iv), but not (i). 

Conditional simulation does not create data; it 
simply provides one possibility (among an infinite 
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number) of what may actually be present at non-
sampled locations. This approach amounts to 
considering the true values as one particular 
realisation of a random function; each conditional 
simulation then provides another. 

Estimation and simulation are two separate and 
distinct procedures with different objectives and 
different results. The objective of estimation is to 
provide the best (however defined) estimate of a 
variable at any location. The objective of simulation 
is to provide a set of values that conform to the 
criteria listed above, i.e., values that reproduce the 
characteristics, or behaviour, of the phenomenon as 
observed in the available data. 

Stochastic simulation methods are used: 
a. To assess the impact of uncertainty. Stoc&astic 

simulation provides a means of assessing risk 
(Dowd, 1994 and Goovaerts, 1999). In this kind 
of study, many alternate models are generated 
and processed to construct a distribution of 
possible values for specified attributes. This 
distribution is used to evaluate the risk 
associated with the uncertainty at unsampled 
locations- Simulation models can also be used 
for decision-making under uncertainty. 

b. To honour heterogeneity. Stochastic simulation 
reproduces spatial variability. In some cases, 
only one outcome is used as a basis for 
performance prediction. Stochastic simulation 
methods enhance the ability to produce a 
realistic level of heterogeneity. 

c. To obtain complex information. Geostatistical 
simulation can incorporate an increasingly broad 
range of information that cannot be 
accommodated by more conventional methods. 
Figure 1 illustrates differences between the use 

of linear kriging and geostatistical simulation. 
Geostatistical simulation can be used to assess 
uncertainty in the production scheduling. The 
estimation of block model, a posterior scheduling is 
evaluated as a "transfer function" (Rossi, 1998). 
Geostatistical simulation provides a response 
distribution by generating multiple images, i.e., a 
series of schedules based on possible realisations of 
the block grades. 

2.1 Sequential Approach to Simulation 

The basis of sequential simulation is that 
conditioning is extended to include all data within a 
neighbourhood that includes the original data and all 
previously simulated values (Joumel, 1989). 
Sequential methods are based on an application of 
Bayes* Theorem: 

Figure 1 Comparison of linear krigmg and geostatistical 
simulation. 

EMBED 
Given the joint simulation of z-values at k 

locations surrounded by n data, the realisations can 
be generated by drawing from a conditional 
cumulative distribution function: 

(2) 

where designates conditioning to the n 

data values and to the k-1 previous realisations. This 
decomposition makes it possible to generate a 

realisation of a random vector in 

K successive steps: 
1. Determine the conditional distribution at the first 

location, which is conditional on the available n 
data: 

(3) 

2. Draw a value z; from the conditional distribution 
of Z; given the n data 

3. Draw a value Z2 from the conditional distribution 
of Z2 given the n original data and that Zt = zs 

K. Draw a value zK from the conditional distribution 
of ZK given the n original data and that Zt = zt, Z2 = 
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Sequential simulation is used for the generation 
of conditional realisations of either a multi-Gaussian 
random function or any non-Gaussian random 
function as long as its conditional distribution can be 
derived. The type of sequential simulation depends 
upon the way in which the local conditional 
probability distribution is estimated. For instance, 
multi-Gaussian kriging yields an estimate of the 
local conditional probability distribution (lepd) by 
assuming a normal distribution and estimating the 
mean and standard deviation. If multi-Gaussian 
kriging is used in simulation, the algorithm is known 
as sequential Gaussian simulation. If indicator 
kriging is used to estimate the lcpd, the algorithm is 
known as sequential indicator simulation. 

2.2 Sequential Gaussian Simulation 

Parametric non-linear geostatistical methods require 
the conditional probability distribution of the 
random variable, which, in practice, is impossible to 
obtain. For a Gaussian random function with known 
mean, the conditional distribution of Z-, is Gaussian, 
with mean /,- and variance o £y, where Z(- is the 
simple kriging estimator of Zr- and G ^ ; is the 
associated kriging variance. The multi-Gaussian 
model overcomes this problem by using the normal 
scores transform of the grades: 

(4) 

Orebody (5) 

One of the most important advantages of multi-
Gaussian kriging is that there is no restriction on the 
type of grade distribution, provided İt is first 
transformed to a normal distribution. Prior to the 
simulation, exploratory data analysis helps to reveal 
whether lack of stationarity, the presence of outliers, 
clustering of data or spiking exists. Provided that the 
random function Y(x) is also multivariate normal and 
strictly stationary, sequential Gaussian simulation 
can be implemented. Otherwise, other procedures 
should be considered. The hypothesis of 
multinormality requires each random variable (Y(x), 
x e Orebody) to be normally distributed (Olea, 
1999). To put it differently, multivariate normality 
among all variables at all possible spatial locations is 
assumed. Not only is normality of the one-point 
conditional distribution function (cdf) required, but 
also the random function should be multivariate 
Gaussian. If transformed data are not multivariate 
normal, the simulated data will not reproduce the 
characteristics of the original data. Ideally, a 
transform which is Gaussian all two-point cdfs 
should be fulfilled. Such a transform is very 
difficult. A simpler, and more readily verifiable, 
assumption is bivariate normality. This can be 

checked from bivariate histograms of sample pairs 
for a fixed lag during variogram calculation. 

The inverse, or back, transformation is performed 
by linear interpolation. Extreme simulated normal 
values that lie outside the range of the conditioning 
data are interpolated using two pre-specified 
extreme transform pairs. The range is set to the 
minimum and maximum constraints on the original 
data values or to narrower values if these constraints 
are unlikely to be exceeded. The main advantages 
and disadvantages are as follows (Dowd, 1992): 

Advantages: 
1. Sequential Gaussian simulation guarantees that 

data are honoured at their locations because 
kriging is an exact interpolator and, therefore, 
yields a zero kriging variance when a datum is 
estimated. The simulated value is thus drawn 
from a normal distribution with zero variance 
and a mean equal to the datum itself. As the 
conditioning is an integral part of the simulation, 
no additional step İs necessary. 

2. Anisotropics can be handled automatically as 
part of the kriging process. Kriging with an 
anisotropic semi-variogram ensures that the 
anisotropics are imparted to the kriged values, 
which, in rum are imparted to the simulated 
values drawn from distributions with means 
equal to the kriged values. 

3. Any covariance function can be implemented. 
Disadvantages: 

1. The main drawback rests on the assumption of 
using the intermediary Gaussian distribution. In 
practice, it is impossible to guarantee a 
multivariate normal distribution. 

2. There is some evidence to suggest that sequential 
Gaussian simulation produces less variation 
between successive simulations than other 
methods such as turning bands. 
The selection of application parameters, such as 

the use of ordinary kriging versus simple kriging, the 
maximum number of simulated nodes retained for 
kriging, octant search parameters, and upper and 
lower extrapolation values can profoundly affect the 
procedure. Non-stationarity can be taken into 
account by using kriging with a trend model instead 
of simple kriging. Chiles & Delfiner (1999) reported 
that a Gaussian stochastic process with an 
exponential covariance model is a special case 
where the method could be applied easily without 
any approximation for any set of data points or 
simulated points, if the mean is known. 

3 CASE STUDY 

Sequential Gaussian simulation is implemented for 
which 616 data values are available from 27 
drillholes and simulated values at 10000 locations 
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are required. The data are CaO contents taken from 
the quarry of a cement plant The performance of the 
method is assessed by its ability to reproduce the 
specified model parameters and statistics. A 
stochastic realisation should reproduce the 
declustered sample histogram and the semi-
variogram model, and should coincide with data 
values at their locations {Figure 2 for semi-
variograms and Figure 3 for histograms). 

Figure 2. Semi-variograms of dala (above) and simulated field 
(below). 

In practice, exact reproduction is impossible 
because: 
- Model statistics are inferred from sample 

information, which is assumed to represent 
population parameters. As more data are used in 
the conditional realisation, the realisation 
statistics become increasingly similar and closer 
to the desired statistics. 

- Data are subject to measurement error and, thus, 
measured values are not necessarily the same as 
the real, in-situ values. Furthermore, the part of 
the nugget effect that arises from these errors is 
not reproduced by the realisation semi-
variogram. 

- When the semi-variogram range is larger than 
the size of the simulation area, ergodic 
fluctuations of the semi-variograms of the 
realisations are especially important. Searching 
is limited to a maximum of the eight closest 
original data and the eight closest previously 
simulated values so as to reduce the computation 
time and to avoid round-off errors in the kriging 
matrix. But theoretically, the search should be 
extended to the semi-variogram range. 

Discrepancies between the semi-variograms of 
the data and those of the simulated values may 
also arise when: 
a. there are no data or previously simulated 

values for kriging, 
b. there are insufficient data and previously 

simulated values for kriging, 
c. the kriging matrix is singular. 

CaO Grade 
Figure 3. Histograms of data (above) and simulated field 
(below). 

4 CONCLUSIONS 

As has been seen from the case study, 10 000 
locations have been simulated. Histogram and semi-
variogram parameters have been fairly reproduced. 
Selective mining units and planning blocks are 
obtained by averaging the values of these supports 
over me larger volumes. The averaging procedure is 
effectively a change of support operation. The set of 
blocks obtained by this process constitutes a 3-D 
block model of me ore body. Simulated values on 
planning blocks are ready to be submitted to the 
production scheduler. Note that geostatistical 
simulation generates only one possible realisation of 
block grades. Given that the fundamental technical 
parameters are the ore reserve block grades and 
tonnages, geostatisical simulation allows the 
assessment of technical risk arising from these 
parameters. The simulation procedure is repeated 
many times. Each simulation produces different 
block grades and tonnages and thus a different pit 
shape and size that have a significant effect on the 
risk analysis. 
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