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ABSTRACT: Simulated Annealing (SA) has been increasingly used in the reproduction of spatial variability. 
In this research, SA was used to improve output of direct sequential simulation method as initial solution. SA 
algorithm mainly consists of four parts: objective (cost) function, transition (perturbation) mechanism, accep­
tance criterion and cooling schedule. The objective function was expressed as a multiple criteria minimisation 
problem in terms of deviations of semi-variogram and histogram of new solution from those of current solu­
tion. The approach was demonstrated on a chromites ore deposit. The results showed that SA could be used to 
reproduce the spatial variability. 

1 INTRODUCTION 

SA is a stochastic method for solving large combina­
torial minimisation problems (Lundy and Mees, 
1986, Laarhoven and Aarts, 1987, Eglese, 1990, Pres 
et. al., 1992, Ansari and Hou, 1997). The method is 
based on the principle of stochastic relaxation. The 
method has an analogy in thermodynamics, specifi­
cally with the way that liquids freeze and crystallise 
or metal cools and anneals. 

Suppose that a cost function in many variables is 
to be minimised. A simple, iterative, local search 
could be performed to find the minimum cost. Dur­
ing the local search process, an initial solution is 
given and then a new solution is selected at random. 
If the cost of the new solution is smaller than that of 
the current solution, the current solution is replaced 
by the new solution. Unfortunately, a local search 
may get stuck at local minima. Let / : X —> R be a 
function to be minimised over X, where X is a finite, 
but very large, set. A neighbourhood N(x) cX is as­
sociated with each element x £ X. Iterations can be 
defined by first selecting a starting point and then re­
petitively selecting y e N(x) and comparing succes­
sive values. SA allows the choice of y to be governed 
by the following stochastic rule: the first y e N(x) is 
selected with probability then y is accepted with 
probability: 

(1) 

where 7* is a parameter known as temperature, x is 
the current solution, y is the new solution. 

2 PROBLEM SPECIFIC DECISIONS 

2.1 Cost / objective function 

The reproduction of stochastic image is expressed as 
an optimisation problem, which can be solved by 
multi-objective SA. In this research, two objectives 
are introduced. Firstly, to reproduce the same spatial 
dispersion (Eq. 2). Secondly, to reproduce the same 
histogram as the true values (Eq. 3). 
Jti = minimisation of deviation from value of the tar­
get semi-vanogram at lags 

(2) 

where y( \ ) is value of expected semi-variogram at 
lag h, and f( h, ) is value of experimental semi-
variogram at lag h, after new transition. 

Given that behaviour of model of semi-variogram 
is more reliable near origin, the division of square of 
the semi-variogram model gives more weights at 
each lag. 
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minimisation of deviation from target cumulative 
histogram at each interval 

(3) 

where G} is value of expected cumulative histo­
gram at interval y and Ğ, is cumulative distribution of 
simulated realization after new transition. 

Objective function: 
Min 

Min 

(4) 

However, the objective functions have different 
units. Therefore, the solution may be dominated by 
other solutions that lead to the algorithm being de­
pendent on one objective. This problem is handled 
small modification in acceptance criterion. 

2.2. Perturbation Mechanism 

In transition mechanism possible locations are se­
lected in a certain order. As known, when a location 
is selected at random it is possible to accept some 
uphill moves before the local optimum is selected. 
Therefore, the local optimum may never be attained. 
This mechanism also prevents to consider for a sec­
ond time before all possible locations are tried once. 
In this research conditional distributions have been 
extracted from ordinary kriging weights. The sum of 
the kriging weights assigned to data of any given 
class is interpreted as the conditional probability of 
this class (Rao and Journel, 1997). 

2.3. Initial solution 

In this research direct sequential simulation was used 
as initial solution. The conditional distributions could 
be of any type as long as their means and variances 
are determined by simple kriging (Journel, 1994). 
The implicit random function model is no longer 
Gaussian and may be difficult to identify a priori, 
but the properties of the implicit random function 
can be observed in the simulated realisations. This 
kind of generalisation preserves the prior covariance 
matrix and leads to an important theoretical exten­
sion of the sequential simulation paradigm. Thus, 
original data values can be used in simulation with­
out data transformation. This is called direct sequen­
tial simulation. Given a stationary random function 
Z(u), not necessarily Gaussian, and N original data, 

the direct sequential 

simulation algorithm is as follows: 
1. Define a random path through all nodes to be 

simulated, 
2. Build the" cumulative conditional distribution 

function of given the N original data and 

all previously simulated values at each node, 
3. Draw a realisation from the estimated ccdf. This 

realisation becomes a conditioning datum for all 
subsequent nodes 

4. Loop until all K nodes are visited. 
The direct sequential simulation produced the 

smoothed random field. In addition, as the numbers 
of location being simulated and of objectives in­
crease, only SA can be prohibitively difficult because 
of computer time. 

3 GENERIC DECISIONS 

3.1. Acceptance criterion 

The percentage deviation is calculated for each solu­
tion instead of the difference between new and cur­
rent solutions as shown in the Equation 6: 

(5) 

(6) 

If the new solution is accepted, it becomes the cur­
rent solution and is noted as a potentially non-
dominated (PN) point. The current solution is com­
pared with previously noted potential PN points. If 
the current solution dominates any PN solution, this 
PN solution is removed from the PN points file. If a 
dominated solution is chosen by the acceptance crite­
ria, the comparison procedure is not applied. This so­
lution will be removed to prevent solutions becoming 
stuck in local optima. 

3.2. Cooling schedule 

Although SA is a simple process, the selection of the 
annealing parameters is not simple because of possi­
bility of stuck at local optima and the operational re­
strictions such as execution time. 
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r*+;=a7"/t was used for the decrement function 
firstly (Kirkpatrick et. al., 1983), where «is accepted 
as 0.80-0.95. This decrement form reduces the tem­
perature very rapidly and most of the running time is 
spent at low temperatures. In this research, a more 
gradual process was used (Dowsland, 1993). Every 
time a move is accepted the system cools according 
to the function , and every time a 
move is rejected the system is heated according to the 
function = ka the system will 
need to go through k heating iterations to balance one 
cooling. If the ratio of rejected moves to accepted 
moves is greater than k, the system heats up and vice 
versa. Thus, this schedule theoretically tends to con­
verge to a situation in which the ratio is about k. This 
was also used as stopping (termination) criterion, k 
should be governed by the size of the neighborhoods 
around these minima. Therefore, sufficient number 
of iterations was allowed around these minima, k is 
separating factor that gives a measure of required ra­
tio of reduction amount at accepted transitions to in­
creasing amount at rejected transitions. In this re­
search it is planned in such a way that 99 out of 100 
transitions are rejected. and a are chosen as 
0.01500 and 0.00015, respectively. 

In order to reduce execution time, an initial tem­
perature is calculated before running the algorithm in 
the following way: 

Where; 
fnew-fmrrem is the average difference in cost over the 

n2 cost increasing transitions, nt is the number of 
cost-decreasing transitions, «2 is the number of cost-
increasing transitions, A is the required acceptance 
ratio - the ratio between the number of accepted tran­
sitions and the number of proposed transitions at the 
given temperature. 

k value is desired as 200 in the case study. Since 
annealing algorithm has also been used in combina­
tion with direct sequential simulation, this ratio is 
adequate. The direct sequential simulation generates 
a sub-optimal solution that then becomes the starting 
solution for SA. Initial temperature was selected as 
35.0 to yield the required ratio. 

4 ENHANCEMENTS ON SA STRUCTURE 

4.1 Quick calculation of cost function 

In SA most of running time was spent for calculating 
new cost function in each transition. Given mat the 
vast numbers of transitions are implemented, the 
computer time required may be prohibitively long 
since calculations of histogram and semi-variogram 
should be repeated in each transition. Therefore, his­
tograms are updated locally. As for semi-variogram, 
a new value replaces with old value. Contribution of 
old value to semi-variogram is subtracted at corre­
sponding lag and is added to the contributions of the 
new value. 

4.2 Storing best solution 

As has been known, SA may accept worse solution 
in final transition. Therefore, it is possible to find 
worse solution as final solution in the end of anneal­
ing. In addition, It was remarked that the SA algo­
rithm did not rely on a strong convergence over time 
with this modification (Glover and Greenberg, 1989). 
If the best solution found so far is storaged, it will be 
guarantee to retain the best solution. This is not com­
putationally expensive. 

5. CASE STUDY 

A case study has been conducted on a chromite data 
set to demonstrate the algorithm developed during 
this research. 

The initial data comprised a set of 27 drillholes, 
the cores from which had been assayed for Cr203. A 
three-dimensional block model was created by direct 
sequential simulation the three grades for each block. 
Blocks are 4m (EW) x 4m (NS) x 3m on a 50 (EW) 
x 50 (NS) x 20 grid. This provided a total of 50 000 
blocks. 

Model statistics are inferred from sample informa­
tion, which are assumed to represent population pa­
rameters. A stochastic realization should reproduce 
the declustered sample histogram and tiie semi-
variogram model, and should coincide with data val­
ues at their locations. Figure 1 showed histogram and 
semi-variogram of 205 core samples. Figure 2 
showed histogram and semi-variogram of 50 000 
simulated values obtained from direct sequential 
simulation. As has been seen, there was no exact 
match with histogram and semi-variogram of data. 
This sub-optimal reproduction was then submitted to 
the SA algorithm. The algorithm was implemented 
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for four million transitions. As the algorithm has 
been designed for multi-criteria optimization prob­
lems, there are generally more than one optimal solu­
tion (non-dominated or Pareto optimality). In the 
case study, the program has yielded three random 

fields in the end of execution of algorithm. Table 1 
summarizes these fields. Final reproduction has the 
same semi-variogram as the true values and the same 
distribution as the true values. 

D i s Lanoö (îıitg) 

Figure 1. Histogram and settu-variogram of reference data 

Oi!t»3 ïii^uertiiul ïïimuïiiOcin 

D i s t a n c e {Lsg) 
Figure 2 Histogram and semi-variogram obtainedfrom direct sequential simulation 

O u n i d i r e c t i o n a l S f i m v « t i o g t a m 
<A£"fc-»r t o u t m i l l x o n t r a n m t i o n a ) 

Figure 3 Histograms and semi-venograms obtained 
Distance (Lag) 

during the SA (after 4 million transitions) 

Table 1. Non-dominated results fo 

Sample 

Field 1 

Field 2 
Field 3 

Co 
23.80 

23 88 
23 81 

23 85 

c, 
37.71 

37.48 
37.62 

37.49 

• t w o object 

Objective 

C-, 

13.59 

13.58 
13.64 

13.52 

ives 

ai 

119.41 

119 03 
! 19.87 

118.91 

a i 

155.24 

155 37 

155.81 

154.40 

Objective 2 

Mean 

37.52 

37 53 
37.59 

37.50 

St.Dev 

8 6239 
8 6217 

8.6277 

8.6235 
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6. CONCLUSIONS 

As SA with enhancements proceeded, exact re­
production was obtained Implementation m the se­
lected temperature decrement, selection of locations 
m certain order during transition mechanism and 
storing best solution so fai produced good ıesults m 
shorter time The program yielded three non-
dominated fields Selection among these repioduc 
tions depends upon preferences of decision maker 
These preferences could be incorporated into algo­
rithm directly Multi-objective SA ıs very powerful 
technique for reproduction of same spatial dispersion 
and dıstııbutıon However, the approach needs ex­
tensive experimentation to find the parameters of 
cooling schedule 
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